Примеры заданий

Примеры заданий 1-го тура
Задание 1

Обозначим A=\frac{1^2+2^2+3^2+...+2019^2}{673\cdot2019\cdot2020}. Какое утверждение является верным?

1) Число A является правильной дробью.
2) Число A является неправильной дробью.
3) Невозможно определить, правильной или неправильной дробью является число A.

2) Число A является неправильной дробью.

Задание 2

За круглым столом сидят рыцари и маги. Известно, что всего сидящих четное число, а рыцарей больше, чем магов.
Верно ли утверждение: всегда найдется хотя бы одна пара рыцарей, сидящих друг напротив друга.
(Если за столом сидит 6 персон, то считается, что 1-й сидит напротив 4-го, 2-й напротив 5-го, 3-й напротив 6-го.)

1) Да, верно.
2) Нет, не верно.
3) Невозможно однозначно ответить на вопрос.

Задание 3

В треугольнике ABC со сторонами AB = 8, BC = 9 и AC = 10 проведите три медианы AL, BM и CK. Сколько
треугольников получилось на рисунке?

1) 13
2) 15
3) 16

Задание 4

Четыре мухи за четыре часа съедают четыре котлеты. Сколько котлет съедят восемь мух за пять часов?

Задание 5

Решите уравнение \frac{x}{x-2}-\frac{4}{x-1}-\frac{2}{x^2-3x+2}=0.
Если уравнение имеет несколько решений, в ответ запишите наименьшее.

Задание 6

Найдите целое значение параметра a, при котором сумма квадратов корней уравнения x^2+x-2ax+1+a^2=0 принимает наименьшее значение.

Задание 7

В равнобедренном треугольнике ABC основание AC = 8, боковая сторона AB = 10. Точка O – центр описанной окружности, а точка I – центр вписанной окружности треугольника ABC. Найдите отношение длины отрезка OI к длине высоты треугольника ABC, проведенной к стороне AC.

Задание 8

Две окружности с разными радиусами имеют общую хорду AB. Прямая ι, не имеющая общих точек с отрезком AB, пересекает эти окружности в четырех точках C, D, E и F, расположенных на прямой ι последовательно в указанном порядке, причем точки E и F принадлежат одной окружности. Отрезки AE и BD не пересекаются. Найдите ∠EAF, если ∠CBD = 120°.

Примеры заданий 2-го тура (11 класс)
Задание 1

Найдите последнюю цифру наибольшего по модулю решения уравнения

\left(x-6\cdot2019^{2020}\right)\left(x+8\cdot2019^{2020}\right)+5x-2\cdot2019^{2020}+6=0

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 2

Доктор Ай вырывает пациенту зуб за 10 минут, а доктор Ой делает это за 6 минут. Доктор Ай накладывает пациенту гипс за 13 минут, а доктор Ой делает это также за 6 минут. Доктор Ай заполняет документы для страховой компании за 14 минут, а доктор Ой делает это за 7 минут. Сколько времени потратят на пациента доктора Ай и Ой, работая совместно, если требуется вырвать зуб, наложить гипс и заполнить документы?

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 3

Найдите наименьшее целое значение параметра a, при котором неравенство

\sqrt{\frac{2x+a}{x-1}}-2\sqrt{\frac{x-1}{2x+a}}\le1

не выполняется ровно для 2222 целых значений x.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 4

В основании прямой призмы GUSG1U1S1 лежит треугольник GUS со сторонами UG = US = 4, GS = 3, боковая сторона GG1 = 5. Плоскость π проходит через точки U и S1 и пересекает биссектрису SK треугольника GUS в точке M такой, что SM : MK = 2 : 1. Найдите периметр сечения призмы плоскостью π.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 5

При каком наименьшем целом значении параметра a система уравнений

имеет решение, удовлетворяющее условию |\sqrt{x}+y|>19? В ответ запишите значение y, соответствующее найденному значению a.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 6

На стороне BC прямоугольника ABCD со сторонами AB = 3, AD = 5 взяты точки K и N такие, что BK = 1, NC = 2. Вне прямоугольника ABCD построен прямоугольник KLMN со стороной KL = 1. Через точку D проходит прямая l, которая пересекает прямоугольник KLMN и делит его периметр в отношении 1 : 2. Найдите сумму тангенсов всех возможных углов между прямыми AD и l.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 7

В треугольнике ABC с площадью 100 на сторонах AB, BC и AC взяты точки K, L и M такие, что AK : KB = 1 : 5, BL : LC = 1 : 1 (точка L – середина стороны BC) и AM : MC = 2 : 1. Отрезки AL и BM пересекаются в точке F, BM и CK – в точке G, AL и CK – в точке E. Найдите площадь треугольника EFG.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 8

В классе на доске было записано некоторое четырехзначное число. Два ученика зашли в класс и подумали, что это пример на умножение двух чисел. Один из них умножал двузначные числа, другой – цифру и трехзначное число. (Например, было написано 2345, один умножил 23 на 45, другой – 2 на 345 или 234 на 5.) У ребят получились числа 507 и 1173. Какое число было исходно записано на доске? Если подходящих чисел несколько, запишите их в порядке возрастания без пробелов. Если такого числа не существует, в ответ запишите 0.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Примеры заданий 2-го тура (10 класс)
Задание 1

Найдите последнюю цифру отрицательного решения уравнения

(x−6·2019^{2020})(x+8·2019^{2020})+5x−2·2019^{2020}+6=0

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 2

Доктор Ай вырывает пациенту зуб за 10 минут, а доктор Ой делает это за 6 минут. Доктор Ай накладывает пациенту гипс за 13 минут, а доктор Ой делает это также за 6 минут. Доктор Ай заполняет документы для страховой компании за 14 минут, а доктор Ой делает это за 7 минут. Сколько времени потратят на пациента доктора Ай и Ой, работая совместно, если требуется вырвать зуб, наложить гипс и заполнить документы?

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 3

Найдите наименьшее целое значение параметра a, при котором неравенство

\sqrt{\frac{2x+a}{x-1}}-2\sqrt{\frac{x-1}{2x+a}}\le1

не выполняется ровно для 3000 целых значений x.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 4

В основании прямой призмы GUSG1U1S1 лежит треугольник GUS со сторонами UG = US = 4, GS = 3, боковая сторона GG1 = 5. Плоскость \pi проходит через точки U и S1 и пересекает биссектрису SK треугольника GUS в точке M такой, что SM : MK = 2 : 1. Найдите площадь сечения призмы плоскостью \pi.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 5

При каком наименьшем целом значении параметра a система уравнений

имеет решение, удовлетворяющее условию |\sqrt{x}+y|>19? В ответ запишите значение x, соответствующее найденному значению a.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 6

На стороне BC прямоугольника ABCD со сторонами AB = 3, AD = 5 взяты точки K и N такие, что BK = 1, NC = 2. Вне прямоугольника ABCD построен прямоугольник KLMN со стороной KL = 1. Через точку D проходит прямая l, которая пересекает прямоугольник KLMN и делит его периметр в отношении 1 : 2. Найдите тангенс наибольшего возможного угла между прямыми AD и l.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 7

В треугольнике ABC с площадью 100 на сторонах AB, BC и AC взяты точки K, L и M такие, что AK : KB = 1 : 5, BL : LC = 1 : 1 (точка L – середина стороны BC) и AM : MC = 2 : 1. Отрезки AL и BM пересекаются в точке F, BM и CK – в точке G, AL и CK – в точке E. Найдите площадь треугольника EFG.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 8

В классе на доске было записано некоторое четырехзначное число. Два ученика зашли в класс и подумали, что это пример на умножение двух чисел. Один из них умножал двузначные числа, другой – цифру и трехзначное число. (Например, было написано 2345, один умножил 23 на 45, другой – 2 на 345 или 234 на 5.) У ребят получились числа 1029 и 1926. Какое число было исходно записано на доске? Если подходящих чисел несколько, запишите их в порядке возрастания без пробелов. Если такого числа не существует, в ответ запишите 0.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Примеры заданий 2-го тура (9 класс)
Задание 1

Найдите последнюю цифру положительного решения уравнения

(x−6·2019^{2020})(x+8·2019^{2020})+5x−2·2019^{2020}+6=0

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 2

Доктор Ай вырывает пациенту зуб за 10 минут, а доктор Ой делает это за 6 минут. Доктор Ай накладывает пациенту гипс за 13 минут, а доктор Ой делает это также за 6 минут. Доктор Ай заполняет документы для страховой компании за 14 минут, а доктор Ой делает это за 7 минут. Сколько времени потратят на пациента доктора Ай и Ой, работая совместно, если требуется вырвать зуб, наложить гипс и заполнить документы?

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 3

Найдите наименьшее целое значение параметра a, при котором неравенство

\sqrt{\frac{2x+a}{x-1}}-2\sqrt{\frac{x-1}{2x+a}}\le1

не выполняется ровно для 2468 целых значений x.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 4

В прямоугольном треугольнике GUS с прямым углом U и сторонами UG = 3 и US = 4 проведена биссектриса GE, а на стороне GU взята точка V такая, что UE = UV . Биссектриса угла S треугольника GUS пересекает прямую EV в точке T. Найдите периметр треугольника GET.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 5

При каком наименьшем целом значении параметра a система уравнений

имеет решение, удовлетворяющее условию |\sqrt{x}+y|>19? В ответ запишите найденное значение a.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 6

На стороне BC прямоугольника ABCD со сторонами AB = 3, AD = 5 взяты точки K и N такие, что BK = 1, NC = 2. Вне прямоугольника ABCD построен прямоугольник KLMN со стороной KL = 1. Через точку D проходит прямая l, которая пересекает прямоугольник KLMN и делит его периметр в отношении 1 : 2. Найдите тангенс наименьшего возможного угла между прямыми AD и l.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 7

В треугольнике ABC с площадью 100 на сторонах AB, BC и AC взяты точки K, L и M такие, что AK : KB = 1 : 5, BL : LC = 1 : 1 (точка L – середина стороны BC) и AM : MC = 2 : 1. Отрезки AL и BM пересекаются в точке F, BM и CK – в точке G, AL и CK – в точке E. Найдите площадь треугольника EFG.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).

Задание 8

В классе на доске было записано некоторое четырехзначное число. Два ученика зашли в класс и подумали, что это пример на умножение двух чисел. Один из них умножал двузначные числа, другой – цифру и трехзначное число. (Например, было написано 2345, один умножил 23 на 45, другой – 2 на 345 или 234 на 5.) У ребят получились числа 845 и 3078. Какое число было исходно записано на доске? Если подходящих чисел несколько, запишите их в порядке возрастания без пробелов. Если такого числа не существует, в ответ запишите 0.

Если Вы считаете, что для получения ответа не хватает данных, или задача составлена некорректно, в поле для ответа запишите −100 (минус сто).